Energiespeicher : In diesen sechs Anwendungsbereichen lohnt sich ein Energiespeicher

battery charge charging power energy full recharge lightning charger alkaline green electricity accumulator fuel electric abstract vector technology illustration geometric form design network dot sketch connect wireframe data structure background digital mesh particle graphic lines poly polygon symbol art blue shape low
© pickup - stock.adobe.com

Der Ausbau der erneuerbaren Energien, um in Zukunft über ein nachhaltiges, dekarbonisiertes Energiesystem zu verfügen, beschäftigt zunehmend auch die Gesetzgebung. Die Einführung von neuen Technologien oder die Errichtung von großtechnischen Anlagen bringt allerdings neben neuen technischen Optionen und gesellschaftlichen Chancen auch Unsicherheiten und Risiken mit sich.

Das gilt auch für eine zentrale Frage der Energiegewinnung, nämlich, wie aus Wasser, Sonne und Wind gewonnener Strom für eine spätere Nutzung zwischengespeichert werden kann. Den für die Zwischenspeicherung verwendeten Technologien kommt damit eine Schlüsselrolle für die Energiewende zu. Das Institut für Technikfolgen-Abschätzung der Österreichischen Akademie der Wissenschaften hat gemeinsam mit dem Austrian Institute of Technology Center for Innovation Systems & Policy im Auftrag des österreichischen Parlaments eine Studie dazu erstellt.

Vier Technologien im Vordergrund

Zwischenspeicher für elektrische Energie ermöglichen eine zeitliche Entkopplung von Angebot und Bedarf und tragen damit auch zur besseren Nutzung von Wind- und Solarstrom bei. Die vorliegende Studie gibt einen ersten Überblick über die Fragen, die mit der Entwicklung solcher Zwischenspeicher verbunden sind. Prinzipiell stehen vier Technologien zur Speicherung von elektrischer Energie zur Verfügung: Mechanische Speicher, wie Pumpspeicherkraftwerke, elektrochemische Speicher, also Batterien, elektrische Speicher, wie Kondensatoren, und chemische Speicher, worunter Wasserstoffspeicher und Brennstoffzelle fallen. Für diese gibt es eine Reihe von unterschiedlichen Anwendungsformen. Sechs dieser Anwendungen werden im Bericht näher beschrieben, da sie für Österreich gegenwärtig als besonders relevant eingeschätzt werden: Pumpspeicher, stationäre Batterie im Haus mit Photovoltaikanlage, virtueller Großspeicher beziehungsweise Pooling, Batteriekraftwerk, industrielles Batteriespeichersystem sowie die mobile Anwendung im Bereich Elektrofahrzeuge.

Die Studie zeichnet dabei ein sehr differenziertes Bild der Zukunft elektrischer Speichersystemen, was nicht zuletzt mit der großen Diversität der unter diesem Begriff zusammengefassten Technologien und Anwendungsformen zusammenhängt. Folgen und Einsatzmöglichkeiten sind daher laut Studie sehr unterschiedlich einzuschätzen. Elektrische Speichersysteme stellen zudem nur eine von mehreren Optionen dar, die zusammen betrachtet werden müssen, um die Herausforderungen des sich langsam entwickelnden dekarbonisierten Energiesystems zu meistern. Aus diesen beiden Erkenntnissen folgt für die Forscher, dass elektrische Speichersysteme nur ein Element der zukünftigen technologischen und organisatorischen Entwicklung sein werden.

Eine weitere Schlussfolgerung lautet, dass es großen und vielfältigen Forschungsbedarf auf nationaler aber auch internationaler Ebene gibt, um alle Elemente optimal aufeinander abzustimmen. Dabei gehe es nicht nur um technische Entwicklung, sondern auch um sozialwissenschaftliche, juristische, ökonomische und ökologische Abschätzungen, mit anderen Worten, um eine inter- und transdisziplinäre Aufgabe, halten die Studienautoren fest.